منابع مشابه
Governing Equations of Fluid Dynamics
(1) Because all of CFD is based on these equations, it is important for each student to feel very comfortable with these equations before continuing further with his or her studies, and certainly before embarking on any application of CFD to a particular problem. (2) This author assumes that the attendees of the present VKI short course come from varied background and experience. Some of you ma...
متن کاملFluid Dynamics: The Navier-Stokes Equations
Classical mechanics, the father of physics and perhaps of scientific thought, was initially developed in the 1600s by the famous natural philosophers (the codename for ’physicists’) of the 17th century such as Isaac Newton building on the data and observations of astronomers including Tycho Brahe, Galileo, and Johannes Kepler. Classical mechanics concerns itself with the mathematical descriptio...
متن کاملNavier-stokes Equations for Fluid Dynamics
1.1. Eulerian and Lagrangian coordinates. Let us begin with Eulerian and Lagrangian coordinates. The Eulerian coordinate (x, t) is the physical space plus time. The Eulerian description of the flow is to describe the flow using quantities as a function of a spatial location x and time t, e.g. the flow velocity u(x, t). This can be visualized by sitting on the bank of a river and watching the wa...
متن کاملBubble dynamics in DNA
The formation of local denaturation zones (bubbles) in double-stranded DNA is an important example for conformational changes of biological macromolecules. We study the dynamics of bubble formation in terms of a Fokker-Planck equation for the probability density to find a bubble of size n base pairs at time t, on the basis of the free energy in the Poland-Scheraga model. Characteristic bubble c...
متن کاملThe Euler–Poincaré Equations in Geophysical Fluid Dynamics
Recent theoretical work has developed the Hamilton’s-principle analog of Lie-Poisson Hamiltonian systems defined on semidirect products. The main theoretical results are twofold: 1. Euler–Poincaré equations (the Lagrangian analog of Lie-Poisson Hamiltonian equations) are derived for a parameter dependent Lagrangian from a general variational principle of Lagrange d’Alembert type in which variat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2008
ISSN: 1742-6596
DOI: 10.1088/1742-6596/96/1/012134